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Abstract 

The previously proposed inelastic scattering theory 
[Wang (1991). Acta Cryst. A47, 686-698] has been 
applied to simulate the diffraction patterns of phonon, 
plasmon-loss and atomic core-shell scattered elec- 
trons. The details of the calculation method and the 
program flow chart are described here. The calculated 
thermal diffuse scattering (TDS) patterns using full 
lattice dynamics agree well with the experimental 
observations for parallel- and convergent-beam- 
illumination cases. The results have shown that the 
Kikuchi pattern is mainly produced by phonon-scat- 
tered electrons and that the Einstein model is not a 
good thermal-vibration model, at least for molyb- 
denum and silicon. Under strongly diffracting condi- 
tions, calculations for energy-filtered diffraction pat- 
terns of core ionization edges have shown that the 
elastic and inelastic scattering can no longer be con- 
sidered as independent and that the angular distribu- 
tion of the inelastically scattered electrons cannot be 
simply described by the Lorentzian function. All these 
dynamical effects can affect the compositional micro- 
analysis in electron energy-loss spectroscopy (EELS). 

1. Introduction 

Studies of inelastic electron diffraction are of great 
importance for developing new microscopy tech- 
niques and understanding the basic physics of elec- 
tron scattering. Theoretically, a proper measurement 
of electron scattering from a crystal lattice with 'time- 
dependent' inelastic perturbation requires huge 
calculations using the available theories, such as the 
Bloch wave and multislice theories (Howie, 1963; 
Wang, 1990), because the excitation of each inelastic 
state of particular energy and momentum needs to 
be treated separately and incoherently. From the 
semiclassical viewpoint, thermal diffuse scattering, 
for example, is the result of statistically averaged 
quasi-elastic electron scattering from crystal lattices 
of different instantaneous 'frozen' configurations. 
Many important results have been obtained based on 
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the Einstein model, in which the atomic vibrations 
are assumed to be random and there are no definite 
phase correlations, and on other simplified models 
(Bird & Wright, 1989; Cowley, 1988; Doyle, 1970; 
Fanidis, Van Dyck, Coene & Van Landuyt, 1989; 
Gjcnnes, 1966; Gj~nnes & Watanabe, 1966; Hall & 
Hirsch, 1965; H~ier, 1973; Loane, Xu & Silcox, 1991; 
Rez, Humphreys & Whelan, 1977; Rossouw, 1985; 
Rossouw & Bursill, 1985; Whelan, 1965a, b). It is still 
necessary, for a generalized phonon excitation model 
with definite phase-correlation patterns, to find a 
method that can 'analytically' average over the scat- 
tering intensities from all these different lattice 
configurations before performing the numerical 
calculations to save computation time. Such a method 
has been derived (Wang, 1991, 1992; Wang & Bentley, 
1991a, b). 

In this paper, the previously proposed theory 
(Wang, 1991, 1992) is applied to simulate the energy- 
filtered diffraction patterns of phonon, single-electron 
and plasmon-loss scattered electrons under the single 
inelastic scattering approximation. The basic theory 
and the calculation method are introduced in §§ 2 
and 3. The calculated results for molybdenum and 
silicon are compared with experimental observations 
(§ 4) and the validity of Einstein model is examined. 
Finally, the simulations for energy-filtered electron 
diffraction patterns of core ionization edges and the 
associated dynamical effects on compositional micro- 
analysis in electron energy-loss spectroscopy (EELS) 
are outlined in § 5. 

2. Basic inelastic electron scattering theory 

Inelastic electron scattering is usually classified as 
four different processes. Plasmon (or valence) excita- 
tion, which characterizes the transition of electrons 
from the valence band to the conduction band, in- 
volves an energy loss in the range of 5-30 eV and an 
angular spread of less than 0.2 mrad for high-energy 
electrons. Atomic core-shell excitations introduce an 
energy loss in the range of a few hundreds to 
thousands of eV with an angular spread of the order 
O~ = AE/2Eo, where AE is the electron energy loss 
and E0 is the incident electron energy. Thermal diffuse 
scattering (TDS) or phonon scattering does not intro- 
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duce any significant energy loss but produces large 
momentum transfer, which can scatter the electrons 
into the large-angle range. The last, but least- 
discussed, process is the Bremsstrahlung radiation, 
which is a continuous energy-loss process and is 
partly responsible for the background intensity at 
high-energy-loss regions in EELS. As a basis for the 
discussion in this paper, the major steps taken in the 
development of the new dynamical theory are briefly 
reviewed here. A detailed derivation can be found in 
Wang (1991, 1992). 

The basic equation governing inelastic electron 
scattering in a crystal was derived from wave 
mechanics (Yoshioka, 1957). If ~o describes the 
elastically scattered wave of energy E and aF, 
describes the inelastically scattered wave of energy 
E,, with n =  1 , 2 , . . . ,  under the single inelastic 
approximation, the generation and scattering of the 
inelastic wave is governed by 

[V2+ k 2 + (2moe/ h 2) V(r)] ~ ,  

-~ (2mo/h2)H'o(r) ~o, (1) 

where k, is the electron wave vector, V is the crystal 
potential and H'  is the inelastic scattering interaction 
Hamiltonian. With the assumption that electron scat- 
tering angles are of the same magnitude as Bragg 
angles, analogous to Howie's (1963) method, the sol- 
ution of (1) can be written in the form 

~ - q~n(r) ~°(r) ,  (2) 

where ~°( r )  is the solution for an elastic wave of 
free-space wave vector kn, which satisfies the 
boundary conditions ~°(x,  y, 0) = exp (ik~- r) and 
the elastic-scattering Schr6dinger equation 

[V2+k2+(2moe/h2)V(r)]~°=O, (3) 

and ~n (r) is a three-dimensional function characteriz- 
ing the inelastic-scattering effects. Equation (3) can 
be solved using either the Bloch-wave method or the 
multislice method. Substituting (2) into (1), using (3), 
neglecting the t~E~)n (r)/Oz 2 term under the small-angle 
approximation and ignoring the d~(r)/.Ox and 
O~p,,(r)/Oy terms, since k~.y << kz, where k = (k~, ky, kz) 
is the wave vector, one obtains 

O~,,(r)/Oz~- aH'o(r)~°(r)[Org°(r)/Oz]-~po(r), (4) 

where a = too~ h 2. For thin crystals such that ~po(r) --- 1, 
the first-order solution of (4) is 

~p~(b, z)=o~[!dzlH'o(b, z,,q)S,,(b,z~)]. (5a) 

Combining this result with (2), one obtains 

~n(b, z)= a [! dzl/~'o(b, zl, q)Sn(b, zl, q)] ~°(b, z), 
(5b) 

where 

S,(r, q)= ~°(r)/[agt°(r)/az]. (5c) 

It has been shown (Wang, 1991) that (5b) is 
equivalent to the inelastic-scattering multislice theory. 
Equation (5 b) has been applied to phonon excitations 
based on the semiclassical 'frozen lattice' model 
(Wang & Bentley, 1991a) and the full lattice dynamics 
(Wang, 1992) case. The theoretical results have suc- 
cessfully interpreted the positions and intensities of 
TDS streaks observed in electron diffraction patterns. 
Further applications of (5b) have provided a simple 
theory that accounts for valence-excitation effects 
in simulating high-resolution electron-microscopy 
images (Wang & Bentley, 1991b, c). 

Phase correlations among the inelastic events (or 
states) critically affect the intensity distribution in the 
diffraction pattern but do not affect the image contrast 
formed by the inelastically scattered electrons under 
the first-order approximation (Cowley, 1988; Wang, 
1992), so that the Einstein model can be used for 
image simulations. This is the reason that the simula- 
tions of inelastic electron diffraction patterns are more 
complex than image simulations. Now one considers 
the energy-filtered diffraction pattern of inelastically 
scattered electrons after exciting a particular state. 
Taking a-two-dimensional Fourier transform of (5 b), 
with a" = (rx, ry) in reciprocal space, and characteriz- 
ing the perturbation of q to the elastic wave gro by 
an average momentum transfer qo (the validity of this 
approximation is discussed in § 3.5), one obtains 

d 

gt,, ('r, d) --~ a ~ dz H'o('r, z, q) 
o 

®S.(~,z ,qo)® o ' g ' . (~ ,  d, qo), (6) 

where ® represents the convolution operation. For 
a three-dimensional periodic crystal structure of 
reciprocal-lattice vector g, H'  can be wril;ten as 
(Howie, 1963) 

H'o(r, q) =exp (iq. r) ~. H i ( g - q )  exp ( - i g .  r) (7a) 
g 

o r  

H'o(~, z, q) 

= [(27r)2/A] exp (iqzz) ~, H g ( g -  q )8 (x -  g + qb), 
g 

(7b) 

where Hg is the Fourier coefficient of H', and A is 
the cross section of the unit cell perpendicular to the 
z axis. Substituting (7b) into (6), summing the inco- 
herent intensities contributed by the inelastic-scat- 
tering processes of different q's but the same energy 
loss and neglecting the coupling between different 
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g's, one obtains 

I(x)=[Vc/(2~r) 3] ~. dqlq',(x,d)l 2 
B Z  

=[ VJ(2~r)3](4~r2a/A)2E ~ dqln~(g-q) l  2 
g B Z  

x IZ ( , r -g+  qb, qz, q0)l 2, (8a) 

where the integration of q is restricted to the first 
Brillouin zone (BZ); qo is introduced to represent the 
average momentum transfer in inelastic electron scat- 
tering; the subscript b refers to the projection of the 
corresponding quantity in the xy plane; 

Z("t, qo)=[!dzexp(iq=z)Sn(x,z, qo) ] 

® qto(% d, qo). (8b) 

Equation (8a) can be further simplified by separating 
the integration of q into qb = (qx, qy) and qz. By the 
definition of a function 

T(x)=[a30('t)127r]E ~ dq:lH'~("r,q:)l 2, (9a) 
g B Z  

where a3 is the lattice constant in the z direction and 

0('r) -= f l  if,r falls within the first Brillouin zone (BZ) 

[0 otherwise, (9b) 

the integration of qb in (8a) can thus be extended to 
(-oo, oo) in reciprocal space. Since qz is mainly related 
to the electron energy loss by q=---ko(E-E1)/2E, 
independent ofqb (Egerton, 1986), to a good approxi- 
mation one can take Z out of the integration of q= 
and thus 

I (x)=~  z 7 dqbT(g--qb)lZ("t--g+qb, qo)l 2 
--00 

= ¢2T(T) ®lz(x , qo)l 2, (10) 

where g = 2"n'ot/A 1/2. The effect of q in S, and qto is 
represented by the effect of a mean value qo. This is 
the key step for simplification of the inelastic calcula- 
tion. The validity of this approximation is discussed 
in § 3.5. The S, function is the key part of the dynami- 
cal calculations, which is responsible for the forma- 
tion of Kikuchi patterns (see § 3.1). Equation (10) 
can be applied to different inelastic-scattering pro- 
cesses, such as phonon, single-electron and valence 
excitations. The corresponding T functions for these 
processes have been given in an earlier paper (Wang, 
1991). Here we concentrate on the numerical calcula- 
tions using (10) for TDS. 

3. Diffraction patterns of phonon-scattered electrons 

Phonon scattering is generated by atomic vibrations 
in the crystal. Thermal vibrations introduce a time- 
dependent displacement to each atom, resulting in a 

small perturbation of the crystal potential. With the 
atomic displacement expressed in the normal coor- 
dinate system under the harmonic oscillators approxi- 
mation, the corresponding T function for TDS is 
derived (Wang, 1991) as 

T ( T D S )  = a 3 e2(27r)50('r) 

x Y~ Y. ~ dqz[ h/2wj(,r)m,] 
j i B Z  

x I[e(ll;)" x] Vt(x) 12, (11) 

where j and I are the summations over all the phonon 
branches of dispersion surface wj(x) and the atoms 
of mass mt and scattering factor V~(x) (including the 
Debye-Waller factor) within the atomic unit cell, 
respectively, and e(ll~) is the phonon polarization 
vector. It is important to note that the variation of 
the phonon dispersion relation oJj(,r), particularly for 
acoustic modes, can produce sharp intensity vari- 
ations across the diffraction pattern, resulting in the 
formation of TDS streaks as observed experimentally. 
The details of applying (10) and (11) to the dynamical 
calculations of TDS electrons are described in the 
next section. 

3.1. Calculations of Z function in the multislice scheme 
As shown by (10), the primary dynamical scattering 

effects are contained in the Z function. The first step 
in the calculation of the Z function is to find the full 
dynamical solution of 1/,o. In this study, the multislice 
theory is employed to solve the elastic-scattering 
equation (3). For the inelastically scattered waves, 
the localized inelastic scattering generated from 
different crystal slices (or depths) is treated as being 
incoherent, so that 

IZ(x, qo)J 2-- Az 2 Y. IS,(x, z,, qo)@ ~°(a', d, qo)l 2, (12) 
i 

where ~°(,r, d, qo) is the elastic transmission wave of 
free-space wave vector k - q o  at the crystal exit face 
and the summation is over crystal slices i of equal 
thickness Az. Since ~o is responsible for the intensity 
distribution of the elastic Bragg reflections, which 
will not be significantly affected by the inelastic exci- 
tation, ~o has been replaced by ~o in (12). To reduce 
the computation time, one neglects the perturbation 
effect of q0 on the elastic wave ~o °, so that (12) can 
be approximately written as 

Iz(x, qo)l z-- az2E IS,(x, z,, qo)® q,o(~, d)l 2. (13) 
i 

In the multislice approach, a crystal is cut into 
many slices in the z direction and the atomic structure 
in each slice is projected onto a plane perpendicu- 
lar to the z axis. It is not straightforward to 
find Orlt°(r,q)/Oz directly f ro~  ~0 in the multi- 
slice approach. For this reason, one starts from the 
original elastic-scattering equation (3). By writing 
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gt°(b, z, q ) -  q~°(b, z, q) exp [ / ( k - q ) .  r], where k =  
(kx, lcy, kz) is the electron wave vector, and neglecting 
the 02¢°/Oz 2 term, (3) becomes 

so that 

S.(r, q) 

_ [" 0 2 0 2 "1 
a ~°oz [~ 2m°e v~°° + [ Tx~ + Ty~ J z 

(14) 

-= ~o°(r)/[0~°(r, q)/Oz] 
= ~o°(r) exp ( - i q .  r) /[  ikz~o°(r, q)+ 0~o°(r, q)/Oz] 

= ~o°(r) exp ( - iq"  r) 

1 [2moe 
x ikz~°(r, q ) - 2 - ~  L h 2 V(r)q~°(r' q) 

/ 3 2 0 2 

+2 0 o (15) 

For high-energy electrons, the first term in the curly 
brackets of (15) is much larger than the remaining 
terms, thus 

Sn(r,q)=~o°(r)exp(-iq.r)/ikz~o°(r,q). (16) 

As will be shown by numerical calculations (§ 3.4), 
the S, function is responsible for the formation of 
Kikuchi lines. The multislice solution of ~Oo ° (Cowley 
& Moodie, 1957; Ishizuka & Uyeda, 1977; Ishizuka, 
1982) is 

~o°(b, z + Az, q)= [~o°(b, z, q)Qq(b, z)] 

®Pq(b, q), (17a) 

where Qq is the phase grating function of the crystal 
slice Az, 

[ z+ z ] 
Qq(b,z)=exp i(o-kJk) I dz'V(b,z') ; (17b) 

z 

the wave propagation function is 

P q ( b ,  q) -- (k~/iAzAk) exp (i,~lb - bol~/Z~az); (17 c) 

o- ~ e/hvo; Vo is the electron velocity; A is the electron 
wavelength of energy E; kz=(k2-q2)~/z; bo = 
(Az/k~)q introduced by the inclined incident effect 
of the beam. The multislice solution of ~o~(b, z) 
similarly follows (17a-c) for q=0.  Finally, the Z 
function can be obtained by substituting the calcu- 
lated Sn function and ~,~(b, z) for different crystal 
slices into (13). This is the core part of the computa- 
tion program. 

3.2. Total absorption coefficient of TDS 
In TDS calculations, the relative contribution of 

TDS to the final diffraction pattern is normalized 
according to the total absorption coefficient of the 
elastic-scattering wave, since the total scattered 
intensity must be conservative. The absorption effect 
introduced by the phonon-scattering process is now 
considered. If the elastic-scattering wave can be writ- 
ten analogously to (2) as 

~o = co(r) ~°(r),  (18a) 

where ~o is the full solution of (3) without consider- 
ing any absorption, the absorption introduced by 
inelastic scattering is contained in co(r), which is 
determined (Wang, 1991) by 

O~Oo(r)/dz=ot ~, H~m(r)Sm(r)q~m(r), (18b) 
m # O  

where the sum over m is over all the excited states. 
Since the elastic scattering of the electrons after 
inelastic scattering (i.e. the process for forming a 
Kikuchi pattern) will not affect the calculation of the 
total absorption coefficient, one can take Sm [defined 
in (5c) and (16)] as a constant, which means there is 
no elastic scattering after inelastic excitation. Sub- 
stituting (5a) into (18b), one gets 

0~o(b, z)/oz 

"--(cr2/k 2) ~ S~m(b,z) idz 'S 'o(b,z ' ) .  (19) 
m # 0  0 

For TDS, H~m is either a real or an imaginary func- 
tion, so that ' - '* Hmo-Horn holds. Integrating (19) and 
using the boundary condition ~oo(b, z--0) = 1, one 
obtains 

~Oo(b,z)--l-(a2/2k~) E Jdz'H'o(b,z') 
m ~ 0  0 

{ I I } - e x p  -(~2/2k~) ~ idz'H'o(b,z') , 
m # 0  0 

(20) 

where the crystal is assumed thin so that the absorp- 
tion factor is small. Substituting the interaction 
Hamiltonian for TDS in (20), changing the summa- 

~-~3n 0 tion of m to [ Vc/(2~r) 3] /.j=t Iaz dq, where no is the 
number of atoms in the primitive unit cell, and using 
the Einstein model, one finally has (Wang & Bentley, 
1991c) 

= eEa2 V ~22 (Ovt[b--rb(1)]) z z, exp \ Ox 

(OVt[b--rb( l)]) 2]}, (21) 
+ \  ~-y / 

where the summation of I is limited to the atoms 
located in the thickness range from z=O to z =  z; 
vt is the projected atomic potential of the lth atom; 
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m 
A 2 is the mean square atomic-vibration amplitude. 
Finally, the total TDS absorption coefficient for a 
crystal of thickness d is the integration of the 
exponential term in (21), 

e2c~ 2 (Ov,(b)~ 2 (Ov,(b)~ 2] 
Cabs-2k:s~--~j Idb[\--'~x / +\--~Y / _1' (22) 

where s is the area of the crystal slice plane. This is 
the equation to be used for normalizing the total TDS 
intensity. 

3.3. Calculation method and program flow chart 
A dynamic program has been written based on 

Ishizuka's (1982) multislice program for simulating 
high-resolution electron-microscopy images. The 
most important advantage of the original program is 
that the calculation for an inclined incident beam can 
be conveniently performed without changing the way 
of cutting crystal slices, providing an easy way for 
calculating the elastic wave of wave vector k - q .  A 
flow chart of the program is shown in Fig. 1, in which 
the original multislice program is taken as a 'sub- 
routine' for calculating the elastic wave. The major 
steps in the program are described as follows. 

The phase grating and propagation functions for 
the normal incident (Qo and P0) and the inclined 
incident (Qq and Pq) electrons following (17 b) and 
(17c), respectively, are calculated in step 1. The TDS 
generation function T is calculated in step 2 from 
(11). The atomic scattering factor Vz('r) is converted 
from an X-ray scattering factor following the Mott 
formula and considering the Debye-Waller factor. 
For monoatomic crystals under the central-force 
approximation, the phonon dispersion relationships 
given by Born (1942) for cubic systems are used. The 

Phase grating Q0 t _-- Phase grating Qq 
Propg. Fnnc. P0 Propg. Func. Pq 

2; 
[Ph . . . . . . .  ttering functi°n T l mul t i s l i c e  A l 

3~ cycle 
[ Total TDS absorpti . . . .  fficient I for TDS 

' l  
Multisli . . . .  Iculation ofelasti . . . . . .  t the [ 

crystal exit face q)O using Qo and P0. 

i 
, fi 

Calculate elastic diffraction pattern 
1 

Convolute T with IZI2 

I Symmetry operation for TDS I 
diffraction pattern 

I Normalize total TDS Intensity 
the absorption coefficient 

_[ Wave propagatlon: I 
~.~ P0.~ I 

- ~p~(x,qo) Pq(~) ] 

I Phase grating: I ~p0(r) Qo(r) 
~p°(r,q 0) Qq(r) 

calc. 8 
Calculating ] 
Sm function 

9; 
Incoherent sum of the 
TDS waves generated 

I from different slices 
10 I IZ(x)12 = 

I>M ~ . . . . ~ m  ~ IS(z,Zm) ® q)O(z)i2 

' l 

bY ~ - ~  Data °utpnt ~ 

Fig. 1. A flow chart of  the TDS dynamical calculation program. 

calculation of the total absorption coefficient in step 
3 follows (22), which will be used for normalizing 
the final TDS intensity. In step 4, the final elastic 
wave for the normal-incidence case [ ¢ o =  ¢O(b ' d)] 
at the crystal exit face is calculated following the 
normal multislice operations. This function needs to 
be calculated first because it will be used in the TDS 
wave calculation for each slice [see (13)]. The incident 
electron wave is assumed to be a parallel beam, i.e. 
in the reciprocal space the beam is a 8 function (for 
the computational process it is just one pixel point). 
The elastic electron diffraction pattern is calculated 
and output at step 5. 

Step 6 is a multislice cycle for calculating the [ZI 2 
function, consisting of steps 7 to 10. Steps 7 and 8 
are designed to calculate the q~(r) and q~(r, qo) wave 
functions following (17). The S function is calculated 
according to (15). The inverse-Fourier-transform 
technique is used to perform the calculation of the 
Laplace operator. Then the convolution of the Sn 
function with ~°('r,  d) (in reciprocal space) and the 
incoherent summation of the convoluted result for 
each slice are performed in step 10. The calculations 
involved in steps 7 to 10 are repeated for each crystal 
slice until the desired maximum crystal-slice number 
(M) is reached. Then in step 11, according to (10), 
the Izl 2 function is convoluted with the phonon- 
scattering function calculated in step 2. Since the 
mean momentum transfer q0 introduced in the initial 
calculation is a vector, the calculated result is rotated, 
in step 12, according to the symmetry of the crystal 
zone axis to perform the symmetric angular average 
of the momentum transfer. In step 13, the total TDS 
intensity is normalized with respect to the elastically 
scattered intensity according to the absorption 
coefficient calculated in step 3. Finally the TDS 
diffraction pattern is output in step 14. 

In the simulations for Mo [001] TDS diffraction 
patterns, a large unit cell was chosen with dimensions 
31.4x 31.4 A (the lattice constant for Mo is 3.14 A), 
which was separated into 256 x 256 pixels. The slice 
thickness was 1.57 A. The incident electron beam was 
assumed to be a plane wave. To compensate for the 
effects of ignoring momentum transfer in the elastic 
wave ,/to from (12) to (13), a small background, less 
than 0.5% of the height of the central (000) beam and 
limited to the first BZ, was introduced in the initial 
incident elastic wave. All the calculations assumed 
100 keV electrons. The mean vibration amplitudes for 
Mo and Si were taken as 0.08 and 0.09 A, respectively. 
The calculation takes approximately 13 h for a 600 
slice diffraction pattern on a DEC station 5000/200. 
The calculated pattern is displayed on a logarithmic 
scale to enhance the visibility of weak features at high 
angles. 

In the following analysis, the experimental diffrac- 
tion patterns were taken with a Philips EM400/FEG 
(100keV) transmission electron microscope and 
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recorded on photographic plates. Since the response 
of the film plate to the electron intensities of different 
dose rates is actually an unknown nonlinear function, 
it is difficult to make a digital quantitative comparison 
between the calculated and the observed patterns, but 
some good agreements can still be obtained. 

3.4. Calculated TDS diffraction pattern 

For a perfect crystal, pure elastic interaction only 
scatters the electrons at the angles satisfying the Bragg 
reflection condition and there is no intensity between 

e • • • • • 

• • • • 

• • • 

Fig. 2. Simulated (a) elastically and (b) phonon-scattered electron 
diffraction patterns of Mo [001 ] for the nonconvergent incident- 
beam case. The crystal thickness is 1884 .~, the beam energy is 
100 keV and the mean momentum transfer qo = 8.32x 10-3 k, 
where k is the electron wave vector. 

the Bragg spots (Fig. 2a). However, electrons can be 
scattered by phonons at different angles, forming a 
visible Kikuchi pattern in reciprocal space. TDS 
streaks are produced and distributed even to larger 
angles where Bragg reflections are relatively weak 
(Fig. 2b). It is clear that inelastic scattering is respon- 
sible for the detailed intensity distribution in the 
diffraction pattern. The sum of the elastic and TDS 
patterns gives the final pattern, which can be com- 
pared with the energy-filtered zero-loss pattern recor- 
ded using the microscope. 

A comparison of a simulated electron diffraction 
pattern of molybdenum [001] with an experimentally 
observed pattern is shown in Fig. 3. The experimental 
pattern shown in Fig. 3(b) is an unfiltered diffraction 
pattern containing the contributions from the elec- 
trons that had experienced various elastic and inelas- 
tic scattering processes, such as plasmon excitation. 
The TDS streaks would appear sharper if an energy 
filter was used (Reimer, Fromm & Naundorf,  1990). 
The simulated pattern is a sum of the contributions 
from purely elastically scattered electrons and 
phonon-scattered electrons. The Bragg spots near 000 
are much stronger than the TDS streaks. The observed 
Kikuchi pattern is not as sharp as the calculated one 
because the specimen foil was bent. The pattern was 
taken from a large thin foil under the parallel-illumi- 
nation condition, since a selected-area aperture could 
not be used for taking these patterns because its use 
limits the contribution of large-angle scattered elec- 
trons. The TDS streaks clearly appear along (010) 
and (100) directions and are the results of phase 
coupling between atomic vibrations. In other words, 
these TDS streaks should not show up if the Einstein 
model is valid. The weak diffuse ring along the first- 
order Laue zone (FOLZ) is also seen but the Bragg 
spots along the FOLZ ring are not in the correct 
positions, being shifted by {100}. This is because the 
phase shift of each slice in the z direction was not 
considered in the multislice calculation, resulting in 
incorrect forbidden reflection conditions for the 
FOLZ. This effect can be properly considered in the 
calculation but needs a large amount of disk memory 
and computation power (Self & O'Keefe, 1989). In 
addition, a larger crystal thickness is used in the 
calculation to match the observed Kikuchi pattern of 
a relatively thin crystal. This is because the multiple 
plasmon and Bremsstrahlung scattering, not being 
considered in the calculation, are contained in the 
experimental patterns and would produce a strong 
uniform Kikuchi-line background. 

For silicon, it is relatively easy to obtain a large 
area of thin unbent perfect crystal. A comparison of 
a simulated elastic and TDS silicon [001] electron 
diffraction pattern with an observed one is shown in 
Fig. 4. The TDS streaks along (110) are clearly shown, 
which indicate that the Einstein model of random 
phase vibration is not a good approximation for Si. 
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In graphics  displays of  electron diffraction pat terns ,  
the large difference in intensity magni tude  makes  the 
selection of  the appropr i a t e  gray level difficult. A 
display of  the calculated pat tern  in Fig. 4 ( a )  that  is 
limited to low-index reflections only is shown in 
Fig. 5. The {220} and  {400} Kikuchi  bands  and  the 
TDS streaks are clearly shown.  

For  the convergent -beam case, however ,  the situ- 
at ion may  be different. The increase of  the beam 

convergence is equivalent  to convoluting the TDS 
streaks with the beam angu la r  spread (Fig. 6a ) ,  result- 
ing in a un i fo rm and  featureless intensity b a c k g r o u n d  
in the diffraction pat tern ,  as shown in Fig. 6(b) .  The 
Kikuchi pa t tern  is clearly p roduced  by TDS.  When 
the elastic and  TDS pat terns  are added ,  the final 
pat tern  agrees well with the experimental  observed 
one except for some differences at the F O L Z  as dis- 
cussed above (Fig. 7). It is coincidental  that  the 
observed convergent -beam pat tern appears  to be 
about  the same as that  expected from the Einstein 

Fig. 3. Comparison of (a) a simulated and (b) an observed Mo 
[001 ] electron diffraction pattern under the parallel-beam illumi- 
nation condition. The crystal thickness is 1884 ~ and the mean 
momentum transfer qo = 8.32 x 10 -3 k. The simulated diffraction 
pattern is the total contributions from elastic and phonon scatter- 
ing. The TDS streaks along (010) and (100) can be seen. 

Fig. 4. Comparison of (a) a simulated and (b) an observed Si 
[001] electron diffraction pattern for the parallel incident-beam 
case. The crystal thickness is 2443 ~, and the mean momentum 
transfer q0=9.62x 10-3 k. The TDS streaks along (110) can be 
s e e n .  
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model because the fine TDS streaks have been 
smeared out by the beam convergence; this does not 
mean that the Einstein model is valid for silicon. 

3.5. Selection of  the mean momentum transfer qo 

In inelastic scattering, the conical angular distribu- 
tion of the electrons after inelastic scattering is the 
source of the formation of Kikuchi lines in the diffrac- 
tion patterns, the inelastic electrons just satisfying the 
Bragg law producing the dark-white line pairs due 
to dynamical scattering. The size of the angular cone 
is determined by the momentum transfer of the elec- 
trons during inelastic scattering. In the above calcula- 
tions, the perturbation effect of momentum transfer 
in the elastic-wave calculation was characterized by 
the effect of a mean value qo. The question is then: 
how does the selection of qo affect the calculated TDS 
pattern? The following calculations may provide 
some answers. 

If qo is chosen to be zero, which means that the 
inelastic scattering does not introduce any angular 
redistribution, Kikuchi patterns should not be seen 
but TDS streaks should be observed. This is exactly 
the calculated result shown in Fig. 8, in which the 
TDS streaks at large scattering angles are not as strong 
as those calculated for relatively large qo as shown 
in Fig. 3(a).  By increasing the value of qo to 4.14 x 
10-3 k, the Kikuchi pattern is formed but the TDS 
streaks are visible only at relatively low scattering 
angles and the FOLZ shows up strongly (Fig. 9a).  If 
qo is further increased to the maximum value within 
the first BZ, the TDS-streak intensity is enhanced at 
large angles but the FOLZ intensity is washed out 
(Fig. 9b). It seems that the selection of qo has to be 
optimized by observing the relative intensities of the 

TDS streaks with respect to that of the FOLZ in 
reference to the experimental observations. A reason- 
able choice of qo would be between 4.14 x 10  -3  k and 
1.66 x 10  - 2  k. This was the principle that was followed 
in the calculations for Mo and Si in Figs. 3-6. Further- 
more, it has been found that the Kikuchi pattern is 
not dramatically affected by the crystal thickness if 
it is larger than approximately 70 nm. This may be 
because steady-state Bloch waves are established 
when the crystal is thicker than this value. It seems 
that the introduction of qo significantly simplifies the 
inelastic calculations, and reasonable results can still 

##0 040 040 q,,q'~ 
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Fig. 5. The calculated pattern of  Fig. 4(a)  for low-angle reflections 
only. 

Fig. 6. Simulated (a) elastically and (b) phonon-scattered electron 
diffraction patterns of Si [001] for the convergent-beam case of 
conical half-angle 4.5 mrad. The crystal thickness is 2443 A and 
the mean momentum transfer qo = 9.62 x 10 -3 k. 
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be obtained. This confirms the validity of the approxi- 
mation of'replacing q by qo in the calculations of S,  
and ~o ° [see (6)]. 

4. Energy-filtered diffraction patterns of valence-loss 
electrons 

Valence (or plasmon) losses are generated by collec- 
tive excitations of the electrons in the crystal. This 
process usually involves small energy losses (about 
10-30 eV) and small momentum transfers. Since (7a) 
is valid only for localized inelastic scattering, it is 

necessary to reconsider the diffraction of valence-loss 
electrons. It is shown in the Appendix that, for a 
homogeneous medium, (10) can still be applied to 
calculate the diffraction patterns of valence-loss elec- 
trons and the corresponding T function is given by 

oo 

TtV)~--[e2hVJ~reo]O('¢) ~ dto Im [ - 1 / e ( t o ,  "r)] 
0 

x [ r 2 + (to/Vo)2] - ' ,  (23) 

where Vs is the volume of the crystal. For common 
inorganic solids, the e(to,,r) values are tabulated 
based on optical measurements (Palik, 1985). The 
program used for TDS calculation can be modified 
for valence-loss calculations simply by replacing 
T (TDs) with T (v) and qo with qE (q~ = AEk/2Eo) .  

A calculated energy-filtered Si [001] diffraction 
pattern of the 15 eV volume plasmon loss is shown 
in Fig. 10(a). For comparison, Fig. 10(b) shows the 
calculated elastic diffraction pattern under the same 
conditions. Obviously, energy loss smears out the 
diffracting intensity. This agrees with the experi- 
mental observations of energy-filtered diffraction pat- 
terns of Reimer et al. (1990). The perturbation of the 
small angular spread of the plasmon loss on the S, 
function seems to be significant. 

5. Energy-filtered diffraction patterns of atomic 
inner-shell scattered electrons 

The development of modern microscopy techniques 
has made it feasible to acquire energy-filtered electron 
diffraction patterns from core-shell excited electrons. 

Fig. 7. Comparison of (a) a simulated and (b) an observed Si 
[001] electron diffraction pattern for convergent incident-beam 
case of conical half-angle 4.5 mrad. The crystal thickness is 
2443 A and the mean momentum transfer qo = 9.62 x 10 -3 k. 

Fig. 8. A simulated Mo [001 ] TDS electron diffraction pattern for 
qo = 0. Other conditions are the same as for Fig. 3. 
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This type of inelastic electron diffraction pattern can 
also be simulated according to (10). Single-electron 
excitation is generated by exciting an atomic inner 
shell, resulting in a particular energy loss and momen- 
tum transfer. Since this process is mainly determined 
by the properties of each single atom, it is possible 
to use the tight-binding approximation, the final T 
function (Wang, 1991) being 

r (s)~- [ e2/Vceo]2(N~Rag/AE) 

x {~ If~ol}[O(x)/(,2+q~)], (24) 

where ao = 0.53 ,~ is the Bohr radius, 9t = 13.6 eV is 
the Rydberg energy, f~,. is the generalized oscillator 
strength (GOS) of the /th atom, which is almost 
independent  of the scattering angle, Vc is the volume 
of the crystal unit cell and qE = k A E / ( 2 E o ) .  For the 
energy-filtered diffraction patterns, the relative mag- 
nitude of the total single-electron excitation is not 
important,  the only important quantity for T (s) is 
the angular-dependent  part O(T)/(~'2+q2E), thus the 
calculation of fin,, is avoided. The program used for 
TDS calculation can be modified for single-electron 
calculations simply by replacing T(TOS)with T (s) and 
qo with qe. 

For relatively low energy-loss core ionization 
edges, the excitation is mostly associated with the 
scattering of the outer-shell electrons through small 
scattering angles. A calculated Si L-edge ( A E  = 
100eV) energy-filtered [001] diffraction pattern is 
shown in Fig. 11. It is clear that the pattern is remark- 
ably diffused by the inelastic scattering and the Bragg 

Fig. 9. Simulated Mo [00l] diffraction patterns of elastically and 
phonon-scattered electrons for different mean momentum trans- 
fers: (a) qo=4.14x 10 -3 k and (b) qo = 1.66x 10 -2 k. Other con- 
ditions are the same as for Fig. 3. 

Fig. 10. Simulated Si [001] (a) energy-filtered plasmon-loss and 
(b) elastic electron diffraction patterns under the parallel-illumi- 
nation condition. The crystal thickness is 543 ~. 
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spots are broadened by the angular distribution of 
the inelastic electrons. Since the incident beam was 
assumed to be a plane wave, the Kikuchi lines seen 
in the background are produced purely by the inelas- 
tic electrons. Sharp streaks, labeled with arrowheads, 
are seen passing through the (000) spot, midway 
between and parallel to the Kikuchi lines, which may 
be generated by the channeling electrons in the (100) 
and (110) atomic planes. In contrast to the diffuse 
low-index reflections, the intensity distribution at 
higher angles appears relatively sharp. 

For high energy-loss ionization edges, the corre- 
sponding characteristic scattering angle could be 
larger than the smallest Bragg reflection angle, so that 
the entire pattern would be smeared out by the 
angular spreading of the inelastic scattering. A full 
dynamically calculated Si K-edge (AE = 1850eV) 
energy-filtered [001] pattern is shown in Fig. 12(a). 
The high-index Bragg reflections are broadened by 
the angular distribution of inelastic electrons. It 
appears that the channeling effect is even stronger 
for K-shell than for L-shell scattered electrons, result- 
ing in the formation of sharp intensity streaks located 
midway between and parallel to the Kikuchi lines, as 
indicated by the arrowheads. This may be because 
the K-shell ionization edge can only be excited by 
electrons channeling close to the atomic nuclei. For 
greater contrast, the detailed intensity distribution at 
low scattering angles is shown in Fig. 13(a). 

In EELS, it is always assumed that the elastic and 
inelastic scattering are independent,  so that the 

intensity distribution in reciprocal space is a convo- 
lution of the inelastic angular-distribution function 
with the elastic Bragg-reflection intensity. This is the 
result of the dynamical elastic and kinematical inelas- 
tic scattering model. The corresponding calculation 
of this model can be performed simply by taking S, 
as a 8 function in reciprocal space [see (13)], and 
the calculated pattern under identical conditions as 
for Fig. 12(a) is shown in Fig. 12(b). The differences 
between Figs. 12(a) and (b) can be summarized as 

~° Si L edge 040 o~o q,q,~ 
% \ r I / ._,., 

\ 

/ 

/ I I \ 

Fig. 11. A simulated Si [001] L-edge energy-filtered electron 
diffraction pattern. The beam convergence is zero, the crystal 
thickness is 1629 ~, and q0 = qE = 4.18 x 10 -4 k. The sharp streaks 
appearing midway between the Kikuchi lines are indicated by 
arrowheads and may correspond to the channeling electrons in 
the (100) and (110) atomic planes. 

Fig. 12. The simulated Si [001] K-edge energy-filtered electron 
diffraction patterns using (a) the dynamical and (b) the kine- 
matical inelastic scattering models. The beam convergence is 
zero, the crystal thickness is 1629 ~ and q0 = q~ = 7.73 x 10 -3/c 
The sharp streaks appearing midway between the Kikuchi lines 
are indicated by arrowheads. 
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follows. Firstly, there is no sharp FOLZ in the full 
dynamically calculated pattern. For ease of under- 
standing, the angular-spread effect of the inelastic 
scattering can be considered as being approximately 
equivalent to wobbling the origin of the Ewald sphere, 
so that all the Bragg reflections at high angles would 
be strongly and uniformly excited, which is equivalent 
to smearing out the intensity distribution of the FOLZ. 
Secondly, the kinematical inelastic scattering model 
does not produce Kikuchi patterns because the elastic 
rescattering of the electrons after inelastic scattering 
was neglected in this model. This proves that the S, 
function is responsible for the formation of Kikuchi 
patterns. Finally, no strong intensity streaks are ob- 
served in the calculated pattern of the kinematical- 
scattering model. As pointed out above, the intensity 
streaks located midway between the Kikuchi lines are 
produced by the channeling electrons, which is a 
purely dynamical-scattering effect. 

To show the fine details clearly, the intensity distri- 
butions at low reflection angles in Figs. 12(a) and 
(b) are redisplayed in Figs. 13(a) and (b), respec- 
tively. The corresponding contour plots of Figs. 13 (a) 
and (b) are shown in Figs. 13(c) and (d), respectively. 

There are two major differences between Figs. 13(a) 
and (b). The first difference is the relative intensity 
of (200) to (000) - more intensity is concentrated on 
(000) in Fig. 13(b). This indicates that the dynamical 
scattering of the inelastic electrons can critically affect 
the intensity distribution in the entire diffraction pat- 
tern. Therefore, the elastic and inelastic scattering are 
no longer independent,  especially for zone-axis cases. 
The other difference is that the angular distribution 
of the inelastically scattered electrons is not cylindri- 
cally symmetric [as seen in Fig. 13(c)] and cannot be 
described simply by the Lorentzian function, which 
is a cylindrically symmetrical function and is defined 
as 1 / (02+02) ,  where 0 is the electron scattering 
angle. The accumulation of electrons along the (000)- 
{220} lines is the result of combined dynamical elastic 
and inelastic scattering. These factors can affect the 
compositional microanalysis in EELS for relatively 
large EELS entrance aperture, as described below. 

In EELS, the chemical composition of a material 
can be derived if the elastic- and inelastic-scattering 
events are assumed to be independent. In zone-axis 
cases, however, apart from the channeling effect, 
this assumption is not correct based on the above 

C '~"J/---7"--~ ~--'1 d 

Fig. 13. (a), (b) The calculated patterns of Figs. 12(a) and (b), respectively, for low-index reflections only. (c), (d) The corresponding 
contour plots of (a) and (b), respectively. 
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calculation; the angular distribution of the inelasti- 
cally scattered electrons cannot be described by the 
Lorentzian function, resulting in inaccuracies of the 
ionization cross-section calculations. In other words, 
the ionization cross section is not solely the property 
of a single atom, but depends on diffracting condi- 
tions and crystal structure. A possible method for 
correcting these effects is tilting the crystal to a 'ran- 
dom' orientation far away from the zone axis, along 
which no strong dynamical diffraction effects can be 
generated. Another possible way is to use a smaller 
EELS entrance aperture, which may eliminate the 
anisotropic distribution of the inelastic electrons. 

However, in surface-composition microanalysis 
using the reflection electron energy-loss spectroscopy 
(REELS) technique, strongly diffracting conditions 
are mostly employed to improve the signal-to-back- 
ground ratio and surface sensitivity (Wang & Bentley, 
1991d). A possible solution in this case is to measure 
the effective ionization cross section by the method 
introduced by Wang & Bentley (1991e). 

The calculated energy-filtered diffraction patterns 
described above can, in principle, be compared with 
the experimental observations. However, it is impor- 
tant to point out that the calculated patterns are the 
results of the core-shell purely inelastically scattered 
electrons without considering the contributions of the 
background electrons in EELS. In practice, it is pos- 
sible to remove the contribution of background elec- 
trons by subtracting the energy-filtered patterns taken 
at the edge and before the edge and by considering 
the relative intensity of the background. The patterns 
processed in this way can be directly compared with 
the calculated ones. 

The background electrons in EELS may be pro- 
duced by the following inelastic-scattering processes. 
The first process is Bremsstrahlung radiation, which 
is a continuous energy-loss process. This process is 
generated by electrons penetrating through matter 
and undergoing collisions with the atoms. X-rays are 
often produced by a beam of electrons hitting a solid 
target. Most collision energy losses occur in small 
steps as fractional energy transfers, producing a con- 
tinuous background in EELS spectra. The existence 
of this process can be seen in the background part 
of X-ray energy dispersion spectroscopy (EDS) 
spectra. The other process is the multiple valence 
excitations, which can produce large accumulated 
energy losses and momentum transfers, so that the 
final scattering angle may be larger than the Bragg 
angle, resulting in the formation of Kikuchi patterns 
as observed by Reimer et al. (1990). These two inelas- 
tic-scattering processes have not been considered in 
these calculations because of the limitation of compu- 
tation power and the complexity of the processes. It 
is believed that the above two processes are respon- 
sible for the formation of a continuous background 
in EELS spectra, which needs to be removed to make 

quantitative analysis of energy-filtered diffraction 
patterns. 

It is worth comparing the results calculated in this 
paper with those of Rossouw (1985). The Bloch-wave 
theory for inelastic scattering has been extensively 
developed by Rossouw and his co-workers for single- 
electron and TDS (using the Einstein model) excita- 
tions. However, the calculations addressed in this 
paper using a different theoretical approach may have 
the following advantages compared to their work. 
Firstly, the full lattice dynamics of atomic vibrations 
is employed in TDS calculations instead of the Ein- 
stein model. This allows the prediction of TDS streaks 
observed experimentally. Secondly, the parallel- 
beam-illumination case is assumed in the above calcu- 
lations, so that the fine details introduced by phonon 
dispersion surfaces can be clearly resolved. 

6. Concluding remarks 

In this paper, the previously proposed inelastic-scat- 
tering theory has been used to simulate inelastic elec- 
tron diffraction patterns after exciting various pro- 
cesses. In contrast to the 'frozen' lattice model, the 
calculations need to be performed only once for all 
the different crystal configurations. More importantly, 
it is feasible to introduce full lattice dynamics in the 
calculation, so that the experimentally observed TDS 
streaks could be simulated quantitatively. The ob- 
served TDS streaks can be used to determine the 
interactions between crystal atoms, leading to some 
information about crystal bonding properties. Based 
on the single inelastic-scattering approximation, it 
has been found that the TDS is the main source of 
forming Kikuchi patterns because of large scattering 
angle, single-electron and valence-band excitations 
contributing less intensity to the Kikuchi patterns. 
The multiple inelastic valence scattering and 
Bremsstrahlung radiation, which are believed to pro- 
duce the background intensity at high-energy-loss 
regions in EELS, can contribute a strong diffuse 
Kikuchi-pattern background to the pattern. 

With reference to the experimental observations, it 
has been found that the Einstein model is not a good 
approximation, at least for molybdenum and silicon. 
The deviation of the Einstein model from experi- 
mental results can be clearly seen in parallel-beam- 
illumination TDS patterns. In the convergent-beam 
case, the features introduced by acoustic phonon 
modes have been totally smeared out after convolut- 
ing with the beam convergence, the final results 
appearing quite similar to that expected from the 
Einstein model, but this does not mean that the Ein- 
stein model is valid in practice. 

It has been shown that small energy losses, such 
as 15 eV, can significantly smear out the intensity 
distribution in the energy-filtered diffraction pattern. 
For zone-axis incident cases, the dynamical diffrac- 
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tion effects are so important that the elastic and 
inelastic scattering cannot be considered as indepen- 
dent; the kinematical inelastic scattering model is not 
valid and the angular distribution of the inelastically 
scattered electrons may not be simply described by 
the Lorentzian function. All these factors can affect 
the accuracy of EELS microanalysis under strongly 
diffracting conditions. In addition, calculations have 
also shown that sharp intensity streaks located mid- 
way between and parallel to the Kikuchi lines are 
produced by inelastic channeling electrons along the 
atomic planes. 
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APPENDIX 

Diffraction of valence-excited electrons 

For delocalized valence excitation (7a) is no longer 
valid. It is necessary to consider the diffraction effect 
based on the mixed dynamic form factor. For valence 
excitations, one assumes that H '0  is independent of 
z. At the crystal exit face z = d, (Sb) can be rewritten 
a s  

~ , , ( b , d ) = a H ' o ( b ) Z ( b ,  to), (A.1) 

where 

z(b ,  to) 

d 

= I dzgt o°( b, z)l {[0 q'o°(b, z, to)l oz] q'o°(b, d, to )}. 
o 

(a.2) 

To simplify the notation, qt°(b, d) is replaced by 
gt°(b, d, to), where hto is the electron energy loss. The 
change of symbol simply neglects the q dependence 
of qto (i.e. presupposes that all states are nondegen- 
crate). For small-angle plasmon excitation, the 
introduction of a small angular spread (less than 
0.1 mrad) does not affect the final calculated results. 
Now one considers the energy-filtered diffraction pat- 
terns formed by the valence-excited electrons. One 
takes the Fourier transform of (A.2) and the contribu- 
tions of all the valence-excited states to the final 
electron diffraction pattern are added incoherently in 
reciprocal space ,r, 

I~(~) = E 17'.(r, d)l 2 
n 

=(o,d/8~3 eo)2E IH'o(,r)®Z(~-, to)l 2, (A.3) 
?1 

where the sum of n is over all the possible valence 
states of different energies and different momenta. In 
general, for n # 0, the interaction of an external elec- 
tron with a crystal can be stated as 

H'o(r)=(Ol(1/47reo) 

× {z I / 
= (e2/87r 3eo) ~ du/u  -2 exp ( iu.  r)p,,o(U), 

(A.4) 

where b and Rk are the positions of the j th crystal 
electron and the kth nucleus respectively and 

p,,o(U)=--(Ol • exp ( - i u  . b)ln ). (A.5) 
J 

p,o(U) is the Fourier-transformed density operator in 
the Heisenberg representation and is usually a com- 
plex function associated directly with the electron 
distribution inside the crystal. By using (A.4) and 
expanding the convolution operation, one can rewrite 
(A.3) as 

Io(x) = Co ~ dub I du~ 

x [Z(T-ub ,  to)Z*(~-u~,,  to)/u2u'2]S(u, u'), 
(3.6) 

: 2 with Uz q,, where Co =a2e4/e2; u 2 U2b+Uz = = 
kohto/2yEo where y is the relativistic correction fac- 
tor, S is defined as the mixed dynamic form factor, 

S(u, u')-= ~. po,(u)pn0(-u'). (A.7) 

For electron collective excitations, the mixed dynamic 
form factor is related to the generalized dielectric 
function by (Kohl & Rose, 1985) 

cO 

S(u ,u ' )=  ~ dto{iheoVs/27re2[1-exp (-flhto)]} 
- -OO 

x[g21e,,,,,(to) ,2 . - g  / e.,.(to)], (A.8) 

where/3 = 1/kBT, T is the temperature of the system 
and Vs is the volume of the crystal. Substituting (A.8) 
into (A.6), one obtains 

Io('t) = Co I dUb I du},Z(x-Ub, to)Z*(x-u~,, to) 

x ~ dto'{iheoV/2~eE[1-exp (-/3hto')]} 
- -CO 

x{1/[u'2euu,(to')]-l/[u2e*,u(to')]}. (3.9) 

Assuming that the distribution of incident electrons 
inside the crystal is not significantly affected by a 
small energy loss, so that the Z function can be 
approximately included in the integration of to' (in 
numerical calculations, this is actually an excellent 
approximation) and considering the condition 
I htol kBT] >> 1 for plasmon excitations, one finds that 
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(A.9) becomes 

oo 
I,,(,r) = C~ V ~ dub ~ du~, ~ d o ( l / u  '2) 

o 

x Im { - - [1 / e ,u , ( t o ) ]Z ( ' t - -Ub ,  to) 

X Z * ( x - u I , ,  to)}, (A.10) 

where C1 = eEm2/7reo h3. Equat ion  (A.10) is a general- 
ized intensity distr ibution in the valence-loss electron 
diffraction pattern.  Now consider  a case where the 
dielectric funct ion depends  only on the electron 
energy loss, for a homogeneous  medium 

1 / e ~ , ( t o ) = [ 1 / e ( t o ,  x ) ] t ~ ( ' t - x ' ) 8 ( Z z - q , ) .  (A.11) 

Thus (A.10) becomes 

oo 
I~(z)  = (eEk~ Vs/7reov 2) ~ dto ~ dub(u~ + q2)- i  

o 

x Im [ -  1/e(to, u b ) ] l z ( , r -  Ub, to)l 2 

oo 
=(e2k2oVJ~reov2) ~ dto{(r2+ q~) - '  

o 

xlm[-1/e(~o, '~)]}®lZ( ' : ,  o~)l 2. (A.12) 

Therefore,  the diffraction pat tern is composed  of  the 
incoherent  addi t ion of  all the electrons with different 
energy losses hto and momen tum transfers,  weighted 
by the probabi l i ty  functions. For  the energy-filtered 
diffraction pat terns of  a nar row energy window,  the 
integration of  energy in (A.12) is dropped.  It is impor- 
tant  to note that  (A.12) has the same form as (10) for 
localized inelastic scattering, thus the corresponding 
T function can be readily written as (23). 
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Abstract 

The object of  this s tudy is the resolution of  a three- 
crystal difffractometer (TCD)  using perfect crystals as 
monoch roma to r  and analyser.  It relates to the reso- 

lution as a function of  the scattering vector Q. This 
informat ion is crucial for the interpretat ion of  high- 
resolution X-ray  diffraction data  obtained very close 
to reciprocal-latt ice points. In this light we present  
the experimental ly  determined resolution of  TCDs  
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